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ABSTRACT

The known differential equation, which describes the spreading of a circular
electron beam in an accelerating field under space-charge repulsion, is de-
rived In a simplified form so that the general solution can be precomputed.
The solution is discussed and is given in a diagram. All auxiliary calcula-
tions are listed in order that the beam radius can be found for any set of
initial conditions. Only the diagrams and a slide rule am needed. Another
independent method of computation for the same purpose, which may be use-
ful under special conditions, is also included.
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LW OF BYRMOLS

r Beam radius w r(s)

z Coordinsat along the beam axis

PFlot time of an electron. starting at t -=0 at z -=0

r beam radius atz- 0

z Velocity of the electron i - i(t) or i(z)

zo Velocity of the electron at z - 0. t -0

U Potential which corresponds to the initial velocity i.

I Beam current

e Charge of an electron

m Mass of an electron

8.54 -10
1 2 am soc

E z Accelerating electric field

K .1
to 2wm

A SEm z

B i

R r A dimensionless radius

T A dimensionless time

W R

dW

Z x - dimensionless coordinate in axial direction
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COMPUTATION OF THE SPREADING OF AN ELECTRON BEAM
UNDER ACCELERATION AND SPACE-CHARGE REPULSION

I. INTRODUCTION

In electron optical devices in which there is a high electron current density, as in cathode-ray

tubes, the field due to the electrons themselves, i.e., space charge, is an important factor in

the determination of the shape of any electron beam. The diverging effect of space charge in a

region which is field free is a standard presentation in many books on electron optics. The equa-

tion of motion is usually attributed to Watson (cf. Ref. 3)

The space charge effect in an accelerated electron beam is also important but does not seem

to have been treated extensively in the literature. We will investigate a circular electron beam

in an accelerating field. The electrons have a certain initial velocity, and enter the axial elec-

trical field - for example, through a hole in a plane electrode. The electrons are now subjected

to constant acceleration and mutual repulsion. The equation of motion has been derived and solved

by II. Moss who gives several examples for the condtions found in cathode-ray tubes.

Such an example is defined by a set of six independent parameters By Moss' method, every

example is solved by computing a function numerically and then integrating it. For a given beam

length, the limits of integration i.ust be found by trial and error. The mathematical difficulties

have apparently preven'ed any wider application of this solution.

In the course of voltage breakdown studies we became interested in field emission as an ini-
tiating mechanism. The high current density of field emission makes the space-charge effect

especially important. In this connection it was desirable to compute many cases which would

have been laborious by Moss' method. A simplified method has been found for computing the

shape of an accelerated circular electron beam with space charge, and we believe that it may be

useful for other applications. This method 'is presented here in detail.

In See. II the mathematical derivation and a discussion of the resolving function are given.
Section III covers the numerical computation of the resolving function. The function is repre-

sented in Figs. 2 and 3.

The reader who wants to solve a specific problem may omit Secs. II and Ill and simply follow

the instructions given in Sec. IV where all necessary steps for the application of the resolving

function are listed. A numerical example is also given in Sec. IV.

In Sec. V a step-by-step procedure is described which is based upon the formula for a beam

in a field-free space. This is a second independent solution of the same problem.



I. MATHEMATICAL ANALYSIS

A. Equation of Motion

For the sake of completeness, we will derive our simplified procedure from the fundamentals,

following closely the original deductions of Hi. Moss. After our Eq. (12) we deviate from Moss'

analysis.

\ LECTNON SMAU

"- h Fig. 1. Geometry for apce-charge spreading of a be=
in an electric field.

We look at a thin slice (thickness Az) of a circular electron beam (Fig. 1) and assume that

in any plane perpendicular to the beam axis the electrons are monoenergetic. The total electro-

static flux due to the space charge in the slice is

1) (s IAZ (1)

Where

) - flux (displacement density),

S sulrfa c of tt cylindrical slice.

p charge within tht. shcv'

I beam current,

'2 velocity of the beam electrons.

Since we assume that the field strength and the flux are constant in axial direction, the end discs

do not contribute and Eq. (1) becomes

D .ZrAz - I (2)

The radial electrical field is then

D t I
Dr l~r (3)
0 o

and the radial force on the electrons Is

elF" = eEra el 2r (4)
'eErad



The equations of motion of the electrons are with an external axial field E

d r l e
dt2 

- c 0zwrz ()

d 2 z e E (6)
dt

2  m

We integrate Eq. (6)

e Et + z (7)

z e t2 + io
t A L 

+ Bt (8)
mZ 2

Equation (7) inserted in Eq. (5) yields

d2r el
edt2 oZWrm (1- Et + z o )

This is Eq. (6) of H. Moss except for a factor t/4 we0 due to the use of different units. In order

to simplify thu differential equation, we introduce the abbreviations

C 0oZwm cI0

B i 1m (tZ)
0 sec

and the dimensionless variables

R r - (13)

T t A(14)

Z-z A (14a)
By

We insert Eqs. (13), (14) and (I4a) into Eqs. (8) and (9) and obtain, respectively,

1 T 2 +T (14b)

3



and

dR iRd,- T + (S

The dimensionless Eq. (15) could be solved as it stands by some numerical method, but it would

still give a two parametric set of curves, which is difficult to compute and to represent.

B. Formal Solution

We write instead

iT+ 1)3/Z d
2 R R -(

dT 2  T

The solution of this Eq. (16) is given in the literature, e.g., by Kamke.2 We may call this solu-

tion a formal one since it is given in terms that have no direct physical meaning. We introduce

the new variable into Eq. (15)

W r (17)%4- + I rP--_ + B

and obtain from Eq. (15) after one integration

2) 2 t W2 ('r 1 1 W
(T+ = -W + ZI dW W + 2 InW + C (t8)

Separation of variables yields

S dW InIT + 1) + C (19)

0 2+ 2InW+ C

The integral represents our resolving function. Before we compute it numerically, we will

make it independent of the parameter W0 [Eq. (28)1. The boundary conditions are

t = 0 r = r 0  = o = r ' zo

T = 0 R = R o 0 i = R °

A dot on a capital letter means differentiation by T; a dot on a lower case h-tter means

differentiation by t.

The boundary conditions Inserted in Eqs. (18) and (19) give

C = * 7 -- I w 2 - 2 I n( )o~ -"Wo-ZlnW o  (ZO)

C =o , (Z0a)

4



where

I II -t 4"R -' r A (21)
"'o Ho - r o- (2 ao -  Z)

C. Discussion of the Resolving Function

The different possible signs in Eq. (19) require special care. We rewrite Eq. (t8)

_it W
2 + 

2 lnW + C

T -_ (22)

The denominator (T + 1) is always positive. Vo is known from the boundary conditions and de-

termines which sign must be applied at the start of the computation W0 also indicates the direc-

tion in which %e have to integrate since T in Eq. (19) must be positive and can only increase.

Therefore,

if Vo < 0, the negative sign in Eq. (t9) applies and W < W o ,

if % o > 0, the positive sign in Eq. 019) applies and W > W o.

It remains to be investigated whether at any later time T there may be a change of the sign of

V, i.e., the point W z 0 needs special attention. We introduce the index n and write

S0 (23)

and also hold the equations ready for use

RV R (24)qT47 (T + 1) 3/2 (4

n I n 0 (25)
n 2 (Tn + 1)3/2'

NT 1 113/

We insert Eq. (23) into Eq. (22) and conclude that for Vn 0 either

or

I 2
T Wn + 2 In Wn + C = 0 (26)

The last case is the interesting one; it means that at Wn the integrand of Eq. (19) goes to infinity.

An investigation of the limit of the integral in Eq. (19) is given in Eq. (31), and it is shown that

the integral plotted vs W remains finite and has only an infinite slope at W = W n '

At this point, W - Wn' we have to reconsider the question of signs in Eq. (19). It is physi-

cally evident that R is always positive and increases monotonically or first decreases to a



minimum and then increases*~ With this in mind, it can be seen from Eq. (24) that if %V started

negative and became zero at W', it can only be positive afterward. That means that from W n

on, the pacitive sign applies in Eq. (19), and the direction of integration is reversed so that W

increases from this point on.

With Wn determined by Eq. (26) we can define the integral independent of the parameter Wo.

with only the parameter C left. We write

f (W)z ___ (27)

F(W)S __t dW (28)
Wn jw 2  

42 iji W +C

In order to compute F(W) from f(W) it is necessary to discuss the limit

lim f(W)

because at this point the intcgrand becomes infinite

f (W) -____________ _

r)Z 2 I
F4 ) (V nf(Wn +) +C

W + _L 2 + 2 In (I -

since 1/4 Wn + 2 nW 0 +C 0 according to Eq. (26),

tim f(W) -

J I(L - zZ-2? -)

I

(n+ i- [ (1/4) -(I /Wn)2

\Z WI I (n72) + (21Wn) j

________(29)

No cmoeover Is Possible under the -s e conditions.

6



The second term in the expression in kept only to estimate the error, We Insert Eq. (29) into

Eq. (28)

F(Wn +C)= flWn +c)de

We take as an approximation

F(Wn + 4) = 2 W (31)

n

for which the relative error will be smaller than

W i

, -(32)

If a maximum error A is allowed (and known), Eq. (32) gives the c up to which we apply

Eq.(3t), i.e., Eq. (28) becomes

F(W) = 2 +__ dW (33)

-n _ n +  z +2 inw +jc

This equation is the basis for the numerical computation of F(W) as it is explained below.

It is worthwhile to note that the minimum value of W, which we have called Wn, does not

correspond to the minimum of the beam radius r or R. The minimum beam radius must sat-

isfy the equation

dR =R=0
dT

With Eq. (24) we can write

R 1 R W(Rm ) t Rmin

qT+I Z (T + 1) 3 72  mi 2 (Tmin + 1)3/2

7



and with Eqs. (17) and (22),

I W(R8) * ' w 2 (Rm1 ) + 2 InW(R.i ) + CWmin) T + t =T + I

This reduces to the equation

2 lnW(R mi n )+C= 0 W<W 0

which determines W(Rmi).

II. NUMERICAL COMPUTATION OF THE RESOLVING FUNCTION

We have chosen a set of values for the parameter C between the limits -20 and +20. This

covers all practical applications we can anticipate. For every C we first compute W n by solving

Eq. (26) with the Newton-Raphson method. The residual error is made smaller than 10. 3 
per-

cent. Next we determine the initial step width c from Eq. (32) assuming & = 10 "4 
and check

whether c < Wn which is the condition for Eq. (32) being valid. If e > Wn we take e 0.9 Wn

instead as initial step width. Now we compute F(W) with a recursion formula:

from Eq. (31)

F t  Z r, (34a)

W

from Eq. (29)

f t(34b)nf 2

2 Wn

fi WI2 I (35a)

4 W1 + 2lnW + C

W i  i. + C , (35b)

_1 + t Ef 1 t
+ cf 1  + 2 cf i  if i is even (36)

- f1-2 + 5 ef -t + i cf1  if is odd (37)

Equation (36) is a simple extension of the Integral over the next step with the trapezoidal rule;

Eq. (37) has the following appearance if we insert successively the preceding equations for

1-1, 1-2, etc.

F 1+ + 4 + a f 1 (...+ 4 + 138)

i t f i ef 3 Ci-I liS



This is Simpson's Rule. After every second step (1 odd) we may adjust the step width c. Then

we have instead of Eq. (38)

F F +  cf + 4 Eif + I eif3 + 3 E3 f3 + + !3 f4 + , 3 f5

F * 13 3 1 4 3 1
I i4fi. + C f + + .f + I e. 2 f1  (39)

This is again Simpson's Rule with varying step width.

Equations (34) through (37) have been coded for the IBM 7090. The computed F(W) is plotted

in Figs.2 and 3.

Once F(W, C) is known and a set of initial conditions is given, we apply the formal solution

as follows. We insert Eqs. (20a) and (28) into Eq. (t9)

F(W. C) - F(Wo , C) In (T + 1) (40)

and invert Eq. (t4b) to

T + I - + 1+ ZZ (41)

We insert Eq. (41) into Eq. (40) and write

F(W.C) In s + 2Z + F(Wo, C) (42)

Since W0 , C and Z are defined by the initial conditions and F is known, Eq. (42) yields W. We
write Eq. (17) with Eq. (41) inserted as

t =w4+t = w4 riz z (43)

In this equation we insert W and find R. By inserting Eqs. (13) and (Z1a) into Eq. (43) we obtain

finally

r R - W 0 4 +z . (44)

o 0

We can now demonstrate the step-by-step application of the formal solution starting with specific

initial conditions.

IV. APPLICATION OF THE FORMAL SOLUTION TO A PHYSICAL PROBLEM

To start the computation, we must know all the parameters which define the beam at the
starting point. These are:

Beam current I

Initial beam radius r
0

Initial beam divergence ro ('z)dr

Initial potential of electrons U

Accelerating electric field E z

9
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In order to find the beam radius r at a given beam length z we compute successively the
following quantities:

Zor A r- . A z P . JEq. (Zia)]

W B- 0  m z i
o

el

it must t e lsg f o

0

C - -W - 2 n [W (Fg.14)

F(WoC) : A I. tF~ , C I
{

A z z o P [Eq. (14a))
1 zo

F(W, C)I is taken from Fig. 2 or Fig. 3. The sig is still indeterminate;

we must take the sign of W0 .

i W W w0  . [Eq. (21)]

w

F'(WO,C) IF(W0. CII (40)
0

F(W. C) F(W 0, C) + In q 1 + Z-Z [Fig. 5 and Eq. (42)1

W(F) is taken from Fig. 2 or Fig. 3

r V41 [Eq. (44)]

Let us look at two examples. In the first, the initial conditio- correspond to the focusing of a

post-acceleration CRT; in the second, to field emission.

13



Initial Conditions

ExampleI Example 2

I= 25 -tO'6amp I -0'6amp

ro=i - t0 3 m 1.785 -1-

U = 103 V 5V

E z 103 V/m S. 10 7V/rn

-- z = 0.25m 1. 10 3 m

Parameters

Example It Example 2

i3=1.873 *10 rnm/sec 1.236 10 6m/sec

W( 0.7223 2.43 10-

Rt - 1.435 0

C =3.781 2.83

Z =0.628 5 -10

IF(W 0 . C) I =0.5100 0

WV -1.796

F(W 0 .C) =-0.5100 0

II +2=0.4080 4.6Z

F(W. C) = -0.1030 4.6Z

W(F) = 0.1791 20.5

Results

Example 1 Example 2

- 0.3040 84S

The result in Example I is comp~ared in Fig. 6 with that of H. Moss for the same conditions.

t rhese nmerical values have ewre significant digit thaon one could read from the dilross, and the remilt is
macre Precise than usually needed.

14



Fig. 6. Iblative beom radius vs lnglh
for conditions of Example 1. The curve
is tht of H. Moss. The point Indicates .-
our result for Z 250 mm.

too 400

Z (0m)

V. ANOTHER INDEPENDENT WAY TO COMPUTE BEAM SPREADING

Instead of supposing a homogeneous field, we now assume many slices perpendicular to the

axis of the beam, where the potential is constant within every slice. At the cut the potential

jumps to the potential of the next slice. Within each slice the beam spreads according to the

formula for a field-free space. At every cut we have to apply the law of electron optical refrac-

tion because the angle of divergence is reduced by the jump of the potential.

The appropriate formula for beam spreading is taken from a recent r~sum6 of Ivey $ and

after correction of an obvious misprint it reads

S1.021 

(V3/4

--- V F Gr (46)
rm I m

where

rm = minimum beam radius at the "waist",

S = axial distance from the "waist" of the beam,

r = beam radius,

V = potential in kv,

I = beam current in amperes,

F (r) = r/m ex dx

gw(V) m 1(for our purpose).

The function F(r/r m ) is taken from Jahnke-Emde4 and plotted in Fig. 7. We represent it within

the range r/rm = I... Z by the simpler expression

F- (rr ) = 2.09 (rr 1)1/' (4?)
m In

which is also plotted in Fig.?7.

With F' inserted, Eq. (46) becomes

S 2.1A4 iv3/4 r )t/2 (48)
rm XT (

15



or

_r S Z  J
r . 0.220 + 1 (49)rm  r"-

The divergence of the beam is

dr =-0.44 --§-- (50)ads r.m  /

Since for our conditions of field emission the spreading of the beam depends only upon the current

density, we may choose a very small initial diameter and a correspondingly small current; then

we have a very small angle of divergence. For a sufficiently small beam divergence, we can

compute the radius at the end of the ith slice by adding separate components:

(a) The radius at the entrance of the slice,

(b) The increment due to space-charge repulsion within the slice, computed
for an initially parallel beam,

(c) The increment due to the initial beam divergence which equals the beam
divergence at the end of the preceding slice times the electron optical
refraction index I

Thus we obtain

r.= 0.22 - + r + dr) a V- (5t)
1 ri t  V3/ i.|  ds)i-t i

(r )i 0.44 1 + (r) i-t viZ)
dsV r 1  *3/2 dsi-tri-i V i  5

2

I..

I.. , ,.0f/6
606



Assuming initially (dr/ds)o A 0. we can compute r step by step. We have only to watch that
< Zri t because otherwise our representation of F(r/rm) fails. It is best to start with a very

small &S, e.g., 10 - 5 mm and to double the stepwldth every cycle. In such a way for E = 50kv/mm.

z % Imm. Vo = Sev, ro= t.7S5 ' 10"6ram, I - 106ampwe obtain

r =- 8Sre

This happens to be just the value that we have found with the graphical method in Example 2
(Sec. IV). (In general we have to allow for a reading error).

The coding of Eqs. (5t) and (52) for the IBM 7090 is reproduced in the appendix.

V1. CONCLUSION

The two examples shown, and many more which have been computed, indicate that both

methods give the same results within the limits of the reading error.
The first method, which uses the resolving function, is appropi late if one wants to quickly

compute a few examples. For the exploration of a variety of conditions, the first method also
offers a fairly simple way to obtain one result at a time, which is useful for the choice of the

next input. Of course, the first method is always recommended if no electronic computer is at
hand.

The second method automatically gives the complete beam shape up to the length under con-

sideration, but it always involves the use of a high speed computer. It is therefore most suitable
for longer series of examples as they occur by systematic variation of parameters in small steps.
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APPENDIX

FORTRAN PROGRAM FOR SOLUTION OF EQS. (51) AND (52).

ELECTRON BEAM

c' DIMENSION DELSO(ZOOO), SO(2000), V(2000), ROP(ZOOO), RP(ZOO),
CAPRP(2004)), CAPR(2000), RHO(2000), RHOP(2000), FIRHO(20OO),
FLOG(20). FLSS(2000)

16 READ INPUT TAPE 2.,1, SOOt), DELSO(I). RHO(I), Fl. U, RHOP(I),
SEND WRITE OUTPUT TAPE 3,3
FM =0. 434294
PlI 3.14159265

13EL.SO(II=2.0* DEL SO(1-1)

ROP(I)=I.I/SQRTF(V(I)* * 3)* (DELSO(I)/RHO(I-1))** 2* 0.220+1.0
IF(ROP(I)-Z.0) 10,1It.1I

I I DEL.SO(I)=DELSO(I)/2.0
GO TO 12

to RP(I)7O.44* DEILSO(I)* FI/(RHO(I-1)* SQRTF(V(I)** 3))
('APRP(I )=RHOP(1-1 )* SQRTF(V(I-1 )/V(I))
(7APR(l)=CAPRP(I)* DELSO(I)

FIRIIC(I)=FI/(PI* RHO(I)* * 2)
FI.OG(I)zLOGF(FIRHO(I))* FM* 0.2
FLSS(I)=IOGF(SO(I)-SO(I))* FM* 0.2
WRITE OUTPUT TAPE 3,2. S0(1), RHO(I), FIRHO(I), FLOG(I), FLSS(1)
WRITE OUTPUT TAPE t4,4, FLSS(I), FLOG(I)
IF(I-2000) 14, IS5,IS

14 IF(SO(I)-SEND) 13, 15, 15

is Go) To 16

C FORMAT STATEMENTS

I FORMAT I5E10.4, ZF6.2)

z FORMAT (3E20.6, ZF20.6)

3 FORMAT (10H S16X, 4HRH014X, 6HI/RHOBX,IZH LOGF(I/RHO) lOX,

10K LOG(S-SO)/)

4 FORMAT (ZFZO.6)

END
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ECXPLANATION OF Till-, SYM13OIS USED IN THE FORTRAN CODE

Fortran Equations (S5I) and (52)

50(1) so

SEND S

SO(l)S

DELSO(I) a -

RO~)O.ZZ -- .L 7 -
V.I 1-2

R P(I) 0.44 i-
-- T

dr Vi 12

CAPHP(I) di 1i-2 .V1 1

dr V

RIIOP(I) ( i-I

FIRHO(I)1

FLAG(I) 0.2 101; 10  for plotting purposes

FLSS(t) 0.2 log 1 0 (S- - S 0 )

The last three symbols are not explained in Eqs. (51) and (52). They are

only used to plot the results in a convenient form.
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